Associations between cow factors, intra-mammary infections and inflammatory indicators

Ann Nyman, MSc, PhD, National Veterinary Institute
Where do we start?

- What do we want to achieve?
 - Prevent spread of infectious subclinical mastitis
- How?
 - We have to find the cows that have infectious subclinical mastitis
- How do we find them?
 - By bacteriological culturing/ PCR assay
 - EXPENSIVE!
 - By measuring inflammatory indicators to help us select cows for sampling
Inflammatory indicators

• Somatic cell count (SCC)
 – At IMI the proportion of neutrophils can increase ≥ 90%

• Enzymes
 – Lactate dehydrogenase (LDH)
 – N-acetyl-β-D-glucosaminidase (NAGase)
 – Alkaline phosphatase (AP)
Inflammatory indicators

• Can increase/decrease due to other factors than infection, e.g. parity, stage of lactation, stress etc.
• How does this affect the ability to find cows with an infection?
Inflammatory indicators

• In Sweden we have used a adjusted SCC
 – Parity
 – Stage of lactation
 – Milk yield
 – Breed

• The adjusted SCC has been used to predict the probability that a cow has infectious subclinical mastitis in one or more udder quarters – “the udder health classes”
The project

Aim
- To investigate associations between the inflammatory indicators and
 - cow factors
 - Intra-mammary infections (IMI)
- To investigate the ability of the inflammatory indicators to predict IMI

M&M
- Approximately 1000 cows from 25 herds
- 3 consecutive samplings
- Bacteriological culturing of all quarters on all occasions
- One whole udder milk sample – SCC, LDH, NAGase, AP
How does cow factors affect SCC, LDH, NAGase and AP in healthy cows?

- Parity and urea in milk was associated with all inflammatory indicators.
How does cow factors affect SCC, LDH, NAGase and AP in healthy cows?

- Breed was associated with SCC and AP
- Days in milk (DIM) was associated with LDH, NAGase and AP
How does cow factors affect SCC, LDH, NAGase and AP in healthy cows?

- Season was associated with LDH and NAGase
 - Lowest in October-November compared to January-April
- Milk yield was associated with SCC and NAGase
- Percentage of fat in milk was associated with SCC and AP
 - Increasing SCC and AP with increasing percentage of fat
- Percentage of protein was associated with LDH
 - Increasing LDH with increasing percentage of protein
Associations between IMI and SCC, LDH, NAGase and AP
Amount explained

SCC models

- IMI negative cows
- All cows

NAGase models

- IMI negative cows
- All cows

LDH models

- IMI negative cows
- All cows

AP models

- IMI negative cows
- All cows
Predictability

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incell</td>
<td>56%</td>
<td>90%</td>
</tr>
<tr>
<td>InIdh</td>
<td>22%</td>
<td>94%</td>
</tr>
<tr>
<td>Innagase</td>
<td>9%</td>
<td>96%</td>
</tr>
<tr>
<td>Inap</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Conclusions

- All investigated inflammatory indicators are significantly associated with cow factors.
- It does not seem necessary to adjust the SCC for cow factors.
- SCC seems the best indicator to use to find cows with subclinical mastitis.
Acknowledgments

- Project group:
 - Karin Persson Waller
 - Ulf Emanuelson
 - Torben Werner Bennedsgaard
 - Torben Larsen

- Financial support from the Swedish Farmer’s Foundation for Agricultural Research (Stockholm, Sweden)