Introduction

• Mastitis – in most cases associated with udder infections/intra-mammary infections (IMI)
 – Any microorganism (bacteria/fungi/algae)
 – Mainly bacteria e.g.
 • Staphylococci
 • Streptococci
 • Coliforms

Example: National surveys in Sweden 2002/03 and 2008/09 – routine culturing

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Acute clinical (n=1056)</th>
<th>Subclinical (n=590)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sa</td>
<td>19 %</td>
<td>19 %</td>
</tr>
<tr>
<td>CNS</td>
<td>16 %</td>
<td>16 %</td>
</tr>
<tr>
<td>Srd</td>
<td>9 %</td>
<td>9 %</td>
</tr>
<tr>
<td>Sru</td>
<td>8 %</td>
<td>8 %</td>
</tr>
<tr>
<td>E.coli</td>
<td>3 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Sra</td>
<td><1%</td>
<td><1%</td>
</tr>
<tr>
<td>Ap</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Contam</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>No growth</td>
<td>22%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Why do we need microbiological diagnostics of udder infections?

• For treatment decisions
 – Eg clinical cases, dry-cow therapy
• To identify type of mastitis problem
 – Decisions regarding management activities, control programs etc
• To control health status
 – Eg buying/selling, breeding decisions

Microbiological diagnostics – How is it done? Guidelines

• Nordic Recommendations for the Laboratory Diagnostics of Mastitis, 1974
• International Dairy Federation, IDF
 – Laboratory Methods for use in Mastitis Work, 1981
 – Definition and Guidelines for Diagnosis, 1987
Microbiological diagnostics – How is it done? Guidelines

- NMC (National Mastitis Council)
 - Laboratory Handbook on Bovine Mastitis, 1999
 - Microbiological Procedures for the Diagnosis of Bovine Udder Infection and Determination of Milk Quality, 2004
- Laboratory accreditation (EN 17025)

Microbiological diagnostics – How is it done? Guidelines

- Guidelines are not complete
- Cover culture-dependent methods
- PCR-tests not included
- Update needed

Microbiological diagnostics - points to consider

- Milk sampling
- Storage and transport of milk samples
- Investigation of growth/presence of microorganisms
 - Veterinary field lab vs commercial labs
 - Culturing vs PCR
- Interpretation of findings – making a microbiological diagnosis at the lab
- Interpretation of the results – making a decision at the cow/farm

Milk sampling

- Decisions before sampling
 - Quarter/cow/herd level?
 - Type of sample? Quarter or composite sample?
 - Pros and cons, culture/PCR ...
 - Which cows/quarters to sample?
 - Based on purpose, history, SCC ...
 - When to sample?
 - In relation to milking, during the lactation cycle ...
- The objective of the investigation decides which way to go

Milk sampling: Cow level – Quarter vs composite samples

- Quarter samples = gold standard
 - Easier to sample aseptically
 - Gives the best picture of the bacterial concentration at the sampling occasion
 - Bacterial concentration varies
- Cow composite sample =
 - Larger risk for contamination
 - Dilution effect
Milk sampling: Cow composite sample - manual vs test milking sampling

- **Manual**
 - Same routine as quarter sampling – aseptic, but collect milk from all quarters in the same tube
 - Risks
 - Must open the tube several times = risk for contamination
 - Difficult to get the same amount from all quarters
 - Difficult to mix properly

- **Via test milking equipment (PCR)**
 - Easy to do
 - Risks
 - Contamination from skin and equipment
 - Risk for carry-over between cows
 - Dilution effect
 - Subclinical quarters have lower production

Aseptic quarter milk sampling

- Sample a clean and dry teat of a clean and dry cow in a clean and dry barn!
 - Clean the teats if necessary using dry/wet tissues
 - Strip out some milk
 - CMT test
 - Clean the teat end with alcohol scrubs
 - Take sample aseptically using sterile milk tubes (with/without preservative)
 - Teat dipping (if suitable/needed)

Storage/transport of milk samples

- Store milk tubes chilled
- Deliver/Send milk tubes to the lab quickly
 - Store chilled at field lab
 - Transport milk tubes chilled to lab
- Risks
 - Too high temperature if not chilled
 - Abundant growth of mixed flora => not correct diagnosis
 - Overgrowth of contaminant => interpreted as pure culture => false positive sample
 - Too low temperature – freezing
 - Some pathogens can die => false negative or false positive (should have been mixed flora)

Storage/transport of milk samples

- If PCR analysis
 - Use sterile tubes with preservative (bronopol) = kills bacteria
 - No need for chilling
 - Freezing not a problem

Investigation of growth/presence of microorganisms in milk samples

- Vet field lab vs accredited lab
- Culturing
 - Most common
 - Gold standard
- PCR (polymerase chain reaction) tests
 - Culture-independent
 - Commercial multiplex tests available
Culturing

- Milk (10µl) is spread on
 - Non-selective agar plates (blood agar)
 - Selective agar plates (eg SELMA used at field lab)
- Incubated at 37°C (aerobic) and evaluated after
 - 18-24 h
 - 48 h

Culturing

- Evaluation of colony morphology
 - Colour, size, hemolysis...
- Evaluation of numbers of colonies and type of growth (pure, contamination)
- Growth on selective agar
- Gram-staining (microscope)
 - Size, shape (coccï/rods), chains, cluster of grapes...
- Agglutination tests (S aureus, streptococci)
 - OK to use with bovine isolates?

Culturing

- Biochemical testing eg
 - Catalase
 - Potassium hydroxide
 - Coagulase
 - Carbohydrate fermentation
 - CAMP reaction
 - PI (PGUA/indol)
 - etc

Culturing – new techniques

- Species differentiation of bacteria
 - Matrix-Assisted Laser Desorption/Ionization
 - Time of Flight (MALDI-TOF) mass spectrometry
- Molecular methods identifying strains within bacterial species eg
 - PFGE
 - RAPD
 - MLST

Culturing

- Antibiotic resistance eg
 - β-lactamase production – staphylococci
 - Eq clover-leaf method
 - Microdilution method
 - Minimum inhibitory concentration (MIC)

PCR tests

- Commercial multiplex real-time PCR tests (Finnzymes Diagnostics, Finland)
- Identification of DNA
 - certain udder pathogens
 - In some tests - βlZ gene – β-lactamase production
PCR – How is it done?

• DNA extraction directly from milk (350 μl)
• Mix DNA extract with PCR solutions
• DNA amplification in 40 thermal cycles
 – real-time PCR instrument

Pros and cons PCR vs culturing

• Pros eg
 – Faster
 – Can detect smaller amounts of bacteria
 – Can detect killed and growth inhibited bacteria
 – Possible to use milk with bronopol
 – Can detect Mycoplasma bovis (difficult to culture)

• Cons eg
 – Identifies a limited number of pathogens
 – More expensive
 – Not possible to save isolates for further studies eg antimicrobial resistance, genotyping
 – Results can be difficult to interpret

Problems with interpretation of PCR results

• Staphylococci
 – If Staphylococcus spp are detected it can be due to presence of several species = contamination
 – If blaZ gene is detected and Staphylococcus spp and/or S aureus you can't tell which species that is resistant
• When several pathogens are detected in a sample
 – Difficult to decide if contamination or not
 – PCR detects more samples with presence of bacteria than culturing
 – Interpretation? Killed or alive? True infection/contamination?

• Based on today's knowledge
 – If not aseptic samples, PCR recommended mainly at herd investigations of Str agalactiae and Mycoplasma bovis

Interpretation of findings – making a diagnosis at the lab

• Culturing
 – No growth
 – Growth of pathogen
 • Amount (1-3)
 • In pure culture
 • In mixed flora
 – Contamination
• PCR
 – No presence
 – Presence of one or more pathogens and/or blaZ
 • Amount (+, ++, +++)
 • Ct values
 – Contamination?

Interpretation of the results at the cow/herd

• Combine microbiological findings with information on
 – Cow/herd history, clinical signs, SCC
 – Sampling and sample handling
 – Culturing or PCR
• Are the lab results true or false?

Interpretation of the results at the cow/herd

• No growth/presence of bacteria
 – True
 • Healthy udder
 • Non-infectious mastitis
 • Pathogen already eliminated
 – False
 • Pathogen needs special culturing conditions or is not included in panel
 • The pathogen concentration in milk is too low
 • Inhibiting substances
 – Take new sample? How good is one sample?
Interpretation of the results at the cow/herd

• Growth/presence of one pathogen
 – True
 • Infectious mastitis
 • Latent infection
 – False
 • If contaminated from start and sample handled/stored suboptimally can result in over-growth of one species

Interpretation of the results at the cow/herd

• Growth/presence of mixed flora/contamination
 – Culture: If 3 or more species = contamination
 • Exception if *S. aureus* or *St. agalactiae* are clearly identified
 – PCR: number of species?
 – Poor sampling or sample handling/transport
 – Uncertain result - may hide an infection
 – Take new sample!

Future developments and needs

• New methods and understanding of pathogenesis
• Culture-dependent methods eg
 – Quality control (field lab/commercial lab)
 – Improvements – eg MALDI-TOF
 – Cost-efficient molecular methods for isolate differentiation within species
• Culture-independent methods eg
 – Improvements of PCR
 – New techniques to detect microorganisms in milk
• Cow-side bacteriological quick tests

Thank you for your attention!